Intraperitoneal gemcitabine chemotherapy as an adjuvant treatment for patients with resected pancreatic cancer: Phase II and pharmacologic studies

Paul H. Sugarbaker, O. Anthony Stuart, Lana Bijelic

Washington Cancer Institute, Washington, DC, USA

Corresponding to: Paul H. Sugarbaker, MD, FACS, FRCS. Washington Cancer Institute, 106 Irving St., NW, Suite 3900, Washington, DC 20010, USA. Email: Paul.Sugarbaker@medstar.net.

Background: Currently, the surgical management of pancreas cancer is recognized around the world as inadequate. Despite a potentially curative R0 resection long-term survival is rare. There is a strong rationale for the use of intraperitoneal chemotherapy in the operating room and long term to reduce local-regional progressive disease.

Methods: Gemcitabine monotherapy was administered by an intraperitoneal route in the operating room with hyperthermia. Then, through an intraperitoneal port placed at the time of pancreatectomy a long-term treatment postoperatively was performed. The peritoneal fluid, plasma and urine concentrations of gemcitabine were measured by high pressure liquid chromatography.

Results: The adverse events associated with hyperthermic intraoperative gemcitabine and long-term intraperitoneal gemcitabine through an intraperitoneal port was well tolerated. Pharmacologic studies showed that the exposure of peritoneal surfaces to intraperitoneal gemcitabine is approximately 200-500 times the exposure that occurs within the plasma.

Conclusions: This standardized treatment with intraoperative and long-term gemcitabine chemotherapy was well tolerated. The pharmacologic studies showed marked local-regional chemotherapy concentrations. These results may facilitate further improvements in pancreas cancer treatment and may lead the way to an evolution of more successful treatment strategies of this dread disease. These early phase II and pharmacologic data on a protocol in progress in patients with resected pancreatic cancer show promising results.

Key Words: Chemotherapy; mortality; morbidity; randomized trials; pancreatic cancer; chemoradiation; European Organization for Research and Treatment of Cancer (EORTC)

DOI: 10.3978/j.issn.2224-4778.2012.06.04
Scan to your mobile device or view this article at: http://www.amepc.org/tgc/article/view/949

Introduction

Cancer with the primary site in the pancreas is the fourth leading cause of cancer related deaths in the United States with an estimate of 37,660 deaths in 2011 (1). Surgery represents the only potentially curative treatment option and complete tumor resection is associated with better disease-free and overall patient survival. Advances in surgical technique, anesthesia and perioperative care in the last two decades have led to a marked decrease in perioperative mortality and morbidity especially in large volume centers. Unfortunately, only 10-20% of patients at the time of diagnosis with pancreatic cancer can be offered potentially curative surgery (2). Furthermore, long-term 5-year survival is rare, even after potentially curative R-0 resection. Recently, Cleary reported 18 of 123 (15%) 5-year...
survival; 4 of these 18 patients died of disease after 5 years (3). In a failure analysis after curative resection, disease recurrence was documented in the local and regional area (50%), on peritoneal surfaces (40-60%) and within the liver as hepatic metastases (50-60%) (4).

Rationale for intraoperative and long-term intraperitoneal gemcitabine

The mechanisms of failure after an R-0 resection by pancreatico-duodenectomy are unclear. One possible explanation for the large number of local and regional failures is surgically induced tumor dissemination and then implantation within the resection site during surgery as a result of the trauma of resection. Conceptually, this forms the basis for administration of perioperative and long-term intraperitoneal chemotherapy. Also, pancreas cancer cells circulating in the bloodstream may enter the peritoneal space and implant on the surfaces that are created by the pancreatectomy. The major advantage of intraperitoneal chemotherapy is the high drug level that can be achieved locally with low systemic exposure (5). A systematic review of randomized control trials has established the role of adjuvant perioperative intraperitoneal chemotherapy in high risk gastric cancer patients after potentially curative resection (6). Also, long-term intraperitoneal chemotherapy has established efficacy in ovarian cancer (7-9). Success of systemic chemotherapy in controlling local disease has a weaker rationale and has never been confirmed in randomized trials. The pharmacokinetics of gemcitabine makes it an excellent drug for intraperitoneal use. With evidence mounting for use of intraperitoneal chemotherapy after resection in ovarian and gastric cancer, a rationale for the use of intraperitoneal chemotherapy after curative resection in pancreatic cancer should be explored with a formal protocol.

Phase II study of adjuvant intraperitoneal gemcitabine for resectable pancreatic adenocarcinoma: Methods and early results

In an Institutional Review Board-approved protocol (MHRI-GU-2009-455) intraperitoneal treatment using gemcitabine monotherapy were conducted. After enrollment and informed consent, a standard pancreatic resection was performed and, if necessary, there was pathologic confirmation of primary pancreatic adenocarcinoma. Patients with adenocarcinoma of the head of the pancreas or tail of the pancreas who have a complete visible resection of disease were eligible.

Following cancer resection gemcitabine at 1,000 mg/m2 was instilled into the peritoneal cavity in a chemotherapy solution containing 1.5% dextrose peritoneal dialysis solution. The volume of peritoneal dialysis solution is 1.5 L/m2. There was a single inflow catheter and four drainage catheters. The chemotherapy solution is maintained at approximately 43 °C at the inflow catheter and 41 °C throughout the whole abdomen. Four smoke evacuators are placed around the periphery of the open abdomen in order to create a “vapor barrier” above the chemotherapy solution. The surgeon’s double-gloved hand is used to maintain a uniform distribution of the heat and chemotherapy solution
right angle needle (Port-A-Cath Gripper Plus, Deltec, Inc., St. Paul, MN) to temporarily maintain proper position for use in 4 to 6 weeks (10). When the patient was fully recovered from surgery and the sutures removed from the skin incision, the adjuvant intraperitoneal gemcitabine was begun. There were six cycles, each of which was 4 weeks in length. Gemcitabine at 1,000 mg/m² was given by intraperitoneal administration on days 1, 8, and 15 of the 4 week cycle.

Results to date show that the hyperthermic intraperitoneal gemcitabine and the long-term intraperitoneal gemcitabine were well tolerated. A single grade III adverse event occurred in the postoperative period. A fluid collection at the pancreatico-jejunal resection required drainage under CT guidance. No grade III toxicities were observed. To date, eight patients have been treated with hyperthermic gemcitabine as part of the pancreatico-duodenal resection and the accrual process is ongoing.

Pharmacologic studies
As part of this phase II single institution study, a pharmacokinetic analysis of hyperthermic intraperitoneal gemcitabine was performed. There was a standard dose of 1,000 mg/m² of gemcitabine in a standard volume of 1.5% dextrose peritoneal dialysis solution (1.5 L/m²). Peritoneal fluid, plasma, and urine samples were obtained at 15-minute intervals throughout the 60 minutes of hyperthermic intraperitoneal chemotherapy. The results as seen in a single patient are presented in Figure 2. Similar data has been obtained in 4 additional patients. The area under the curve ratio of concentration times time of intraperitoneal to intravenous gemcitabine was 210. To date, no data regarding gemcitabine within pancreatic tissues is available.

Six months of normothermic intraperitoneal gemcitabine using an intraperitoneal port was given. This dose and schedule is the same as the current recommendation for use of intravenous gemcitabine. The route of administration in the current study is intraperitoneal rather than intravenous.

The adverse events associated with pancreatico-duodenectomy combined with hyperthermic intraperitoneal gemcitabine were limited. In these eight patients only a single grade III intervention was necessary in order to complete the postoperative course. This patient had a minor leak from the anterior aspect of the pancreatico-jejunal anastomosis. CT was performed and showed a fluid collection which was drained under CT guidance. The return to normal oral nutrition and the time to hospital discharge were not prolonged. There have been no episodes of intestinal obstruction or other symptoms that would suggest peritoneal sclerosis from the hyperthermic gemcitabine or from the long-term intraperitoneal gemcitabine. The median hospital stay for treated patients was 13 days and this was not thought to be different from other patients treated at our institution.

Discussion: Summary of randomized control trials of adjuvant therapy for pancreatic cancer
Realizing that the chances are small of surgical resection alone being curative for pancreas cancer, there have been many studies analyzing the benefits of adjuvant therapy. In 1985 the Gastrointestinal Study Group (GITSG) conducted a 2-arm study trial randomizing patients into 5-fluorouracil (5-FU) based chemoradiation versus observation (11). The mean survival in the chemoradiation arm was 20 months compared to 11 months in the observation arm. The 5-year survival was 18% and 8% respectively. The trial was able to recruit 43
patients in 11 years. It was closed because of slow accrual and significant benefit favoring adjuvant chemoradiation.

The European Organization for Research and Treatment of Cancer (EORTC) trial was an adequately powered study designed to validate the result of the smaller GITSG trial (12). Adjuvant therapy was similar except that the GITSG study used maintenance chemotherapy while the EORTC trial did not. In the EORTC trial, 218 patients with pancreatic and ampullary cancer were recruited. Randomization was to the observation group or radiotherapy with split-course radiotherapy (40 Gy) and concurrent 5-FU as a continuous infusion. After a median follow-up of 11.7 years, there was no difference in overall survival between the 2 arms. The limitations of this study were the lack of maintenance chemotherapy and a questionable statistical design that limited its ability to detect a small benefit for adjuvant chemoradiation.

The European Study Group for Pancreatic Cancer (ESPAC) conducted a trial between 1994 and 2000 (ESPAC-1) (13). In the 2×2 factorial design, 145 patients were randomized to the chemoradiotherapy arm, and 144 were randomly assigned to no chemoradiotherapy. Radiation was administered as a split course (total 50 Gy), concurrent with 5-FU. There was no difference in the median survival (15.5 months in the chemoradiotherapy arm and 16.1 months in the no chemoradiotherapy arm). In the final results of the ESPAC-1 trial, the median survival was 15.9 months in the chemoradiotherapy arm and 17.9 months in the group not assigned to receive chemoradiotherapy (P=0.05) (14). The estimated 5-year survival was 10% in the chemoradiotherapy arm compared with 20% in those who did not receive chemoradiotherapy (P=0.05). The cause for improved survival in the control group in this trial was not immediately evident.

With both EORTC and the ESPAC-1 studies showing no survival benefit, the evidence to support continued use of adjuvant chemoradiotherapy in pancreatic cancer has been markedly reduced. This lead to increased interest in clinical trials using chemotherapy alone.

The ESPAC-1 trial also studied the possible benefit of a bolus of 5-FU administered intravenously. A total of 289 patients were randomized using the 2×2 factorial design and followed for 47 months (14). The survival with chemotherapy was 20.1 months and without chemotherapy were 15.5. The survival benefit was evident not only with R0 but also with R1 resection.

In contrast to contradictory data from combined chemotherapy and radiotherapy, clinical research with gemcitabine has shown it to be a major advance in the treatment of pancreatic cancer. Gemcitabine is a difluorinated analog of the naturally occurring nucleoside deoxyctydine and has shown significant clinical activity in a variety of solid tumors including pancreatic cancer. A most recent and significant study regarding the use of adjuvant gemcitabine is the CONKO-001 (Charité Onkologie) study (15). This multicenter randomized control trial conducted between July 1998 and December 2004 was designed to test the hypothesis that adjuvant chemotherapy with gemcitabine administered after complete resection of pancreatic cancer improves disease-free survival by 6 months or more. A total of 368 patients with gross complete (R0 or R1) resection of pancreatic cancer and no prior radiation or chemotherapy were enrolled into 2 groups. One group of patients was randomized to receive adjuvant chemotherapy with 6 cycles of gemcitabine on days 1, 8, and 15 every 4 weeks (n=179), and the second group was observed (n=175). Median disease-free survival was 13.4 months in the gemcitabine group and 6.9 months in the control group. Estimated disease-free survival at 3 and 5 years was 23.5% and 16.5% in the gemcitabine group, and 7.5% and 5.5% in the control group, respectively. These authors concluded that treatment with gemcitabine for 6 months after complete resection of pancreas cancer statistically significantly increases median and disease-free survival. A recent abstract reporting follow-up in 2008 confirms these benefits (16).

The effect of gemcitabine on disease-free survival was significant in patients with R0 and also R1 resection. In the follow-up analysis gemcitabine did improve the overall survival (gemcitabine 22.8 months vs. control 20.2 months). The most impressive statistic was the delayed development of recurrent disease after complete resection of pancreatic cancer compared with observation alone. This clinical trial strongly supports use of intravenous gemcitabine as adjuvant chemotherapy in resectable carcinoma of the pancreas.

Given the conflicting data concerning the use of chemoradiotherapy in resected pancreatic cancer, the optimal treatment of patients in this setting remains controversial. In Europe, chemotherapy with gemcitabine alone is generally accepted as standard of care; whereas in the United States, chemoradiation therapy is still commonly recommended.

Recently, a multi-agent chemotherapy regimen used to treat patients with unresectable disease has shown improved survival when compared to single agent gemcitabine. In 342 randomized patients the FOLFIRINOX regimen resulted
in a median overall survival of 11.1 months as compared to 6.8 months in the gemcitabine group. Clearly, this multi-agent chemotherapy regimen becomes a candidate for adjuvant treatment of resected pancreas cancer (17).

Intraperitoneal gemcitabine pharmacokinetics

Gemcitabine is a prodrug which has little or no cytotoxic effect. The drug is metabolized within tissue to the active agent, gemcitabine triphosphate. The efficacy of gemcitabine has been correlated with concentrations of gemcitabine triphosphate accumulated in peripheral blood mononuclear cell (PBMC), which in turn is related to plasma concentration. The rate of intracellular accumulation of gemcitabine triphosphate was highest when plasma gemcitabine was about 20 micromol/L (18). Beyond this there is enzymatic saturation and further increase in plasma concentration does not produce any increase in intracellular gemcitabine triphosphate concentration.

There are two types of infusion regimens followed for gemcitabine. First is the fixed dose rate regimen: In this regimen generally 1,000 or 1,500 mg/m² is infused during 100 or 150 minutes. The dose rate of 10 mg/m²/min achieves the target plasma concentration of 20 micromol/L. In contrast the standard dose therapy of gemcitabine administered by intravenous infusion is 1,000 mg/m² over 30 minutes once weekly for up to 7 weeks (or until toxicity necessitates reducing or holding a dose), followed by a week of rest from treatment. Subsequent cycles should consist of infusions once weekly for 3 consecutive weeks out of every 4 weeks.

Much of the controversy about the use of gemcitabine in further clinical trials has concerned the possible superiority of fixed dose rate over the standard dose schedule. It is a known fact that the fixed dose rate infusion achieves better concentrations of gemcitabine triphosphate in PBMCs but the clinical benefit of this is uncertain (18).

A criticism of the use of intraperitoneal gemcitabine in carcinoma of the ovary was that better plasma concentrations could be achieved by fixed dose rate intravenous infusion of gemcitabine than by intraperitoneal administration. In the study by Sabbatini et al., plasma concentrations of intraperitoneal gemcitabine administered were between 0.92-8.2 micromol which was considerably below the threshold for maximum effect (20 micromol) (19). However, this criticism ignores the high likelihood that intraperitoneal chemotherapy acts by direct uptake of the drug into cancer cells or peritoneal implants. Furthermore, as Gandhi et al. have pointed out, almost all pharmacokinetic studies on gemcitabine have a caveat that the cellular pharmacokinetic data are obtained from a surrogate tissue (circulating peripheral blood mononuclear cells) rather than from the target solid tumor tissue (18). The gemcitabine drug levels within solid tumor tissue are not known. Also, levels of gemcitabine-activating and -inactivating enzymes within cancerous tissue such as cytidine deaminase, deoxycytidine kinase and nucleotidases are not well defined. It is merely an assumption that fixed dose rate infusion in comparison to intraperitoneal administration would result in greater area under the curve (AUC) and/or peak levels of gemcitabine triphosphate in tumor cells located at the peritoneal surface of the abdomen and pelvis. Gandhi et al. has suggested pharmacologic studies in which tumor tissue is directly available for measurement of gemcitabine triphosphate concentration.

Clinical and laboratory studies do show a theoretical advantage of intraperitoneal versus intravenous gemcitabine (20). Pesteieau and colleagues studied the pharmacokinetics of intraperitoneal gemcitabine in a rat model. The area under the curve ratio of intraperitoneal to systemic drug exposure in the rat model was between 12.5 and 26.8 depending on the dose of intraperitoneal gemcitabine. All tissue samples from the peritoneal cavity showed an increased drug concentration when administered with intraperitoneal hyperthermia as compared to a normothermic state.

Sugarbaker and colleagues reviewed the data on intraperitoneal gemcitabine in humans by taking plasma and peritoneal fluid samples from patients in the operating room (21). These data showed that gemcitabine used with heated intraoperative intraperitoneal administration at 1,000 mg/m² in 3 liters had marked local-regional drug exposure. The area under the curve ratio of concentration times time for intraperitoneal to intravenous drug was 200. In these pharmacologic studies of patients who had resected pancreas cancer treated with intraperitoneal hyperthermic gemcitabine, considerable benefit was suggested.

The adequate plasma concentration of 5.26 mcg/mL has been recommended (19). In our patient presented in Figure 2, the peak plasma concentration was 4.03 mcg/mL, very close to the target achieved by a fixed dose rate infusion. Of course, the translation of the pharmacologic advantage into an improvement in local-regional disease control requires further clinical studies.

In a study involving nine patients with advanced pancreatic malignancy reported by Gamblin et al., intraperitoneal chemotherapy was administered using

© AME Publishing Company. All rights reserved. www.amepc.org/tgc Transl Gastrointest Cancer 2012;1(2):161-168
indwelling peritoneal catheters (22). Intraperitoneal gemcitabine was well tolerated and no significant toxicities were noted. There was rapid decrease in peritoneal gemcitabine concentration due to almost total absorption of the intraperitoneally-administered gemcitabine. Steady plasma concentrations were reached early implying absorption of virtually all intraperitoneally-administered gemcitabine. These findings combined with the fact that gemcitabine has low local toxicity argue well for its use in intraperitoneal chemotherapy.

Intraperitoneal gemcitabine in ovarian carcinoma

A phase 2 study using intraperitoneal cisplatin and intraperitoneal gemcitabine in carcinoma of the ovary was conducted by Sabbatini *et al.* (19). The patients selected were those with persistent disease documented by a second-look assessment. The patients were given intraperitoneal cisplatin (75 mg/m2) on day 1 and intraperitoneal gemcitabine at 500 mg/m2 on days 1, 8 and 15 on a 28-day schedule for four courses. The median time to treatment failure and overall survival of 15.9 and 43.5 months, respectively, were consistent with historical data in second-look-positive patients receiving a variety of intraperitoneal platinum-based regimens for consolidation. There was no apparent benefit with intraperitoneal gemcitabine and the authors attributed this to the dense peritoneal fibrosis that they encountered during second-look surgery. The authors of this study (as discussed earlier) have stated that the concentrations in peripheral blood mononuclear cells resulting from intraperitoneal gemcitabine were determined to be much below the maximum therapeutic values in plasma. Data regarding an increased local-regional drug concentration and improved local-regional control of cancer as a result of intraperitoneal administration was not provided.

In the study by Sabbatini *et al.*, patients were treated using intraperitoneal cisplatin at 75 mg/m2 on day 1 with a dose escalation of gemcitabine at 500, 750, 1,000, or 1,250 mg/m2 intraperitoneally on days 1, 8, and 15 of a 28-day schedule for four courses (19). The phase I dose-limiting toxicity was grade III thrombocytopenia at day 15 on dose level 1. The chemotherapy protocol was modified to cisplatin (75 mg/m2) on day 1 and gemcitabine at 500 mg/m2 on days 1 and 8 of a 21-day schedule for four courses.

Of the 30 patients that were enrolled for the study, 9 were removed from the study; one each for hypersensitivity, cellulitis, and intraperitoneal port malfunction, two for progression of disease, and four for renal toxicity. Other toxicities included grade 3 nausea (7%) and transient grade 3 neuropathy (3%). Grade 1 or 2 neuropathy was frequently seen (80%). Five patients (17%) returned to the operating room at a median of 6 months (range, 1-20 months) after intraperitoneal therapy for evaluation of abdominal pain; two patients had recurrence and all had areas of fibrous tissue with encasement of the bowel. The peritoneal sclerosis was, most likely, related to repeated doses of intraperitoneal cisplatin. The authors suggest that the lack of benefit from intraperitoneal gemcitabine in ovarian cancer patients may be from poor drug distribution and extensive peritoneal fibrosis documented in this group of patients.

Clinical trials of gemcitabine alone or in combination with other drugs in patients with unresectable pancreas cancer

The current available evidence for treatment for unresectable pancreatic cancer suggests that gemcitabine monotherapy chemotherapy should be considered a valid treatment option. In the important study reported by Burris and colleagues, 126 chemotherapy-naïve patients with unresectable pancreatic cancer were randomized to receive either intravenous gemcitabine or 5-fluorouracil. The primary endpoint was a composite of pain measurements, weight, and performance status (23). Patients treated with gemcitabine derived significantly more clinical benefit than those receiving 5-fluorouracil (23.8% vs. 4.8%, respectively; P=0.0022). In addition there was a statistically significant improvement in overall survival (median: 5.65 vs. 4.41 months, respectively) with a 1-year survival rate of 18% in the gemcitabine cohort compared with 2% in patients receiving 5-fluorouracil ($P<0.002$).

Berlin and colleagues published an ECOG phase 3 trial including 327 patients with advanced carcinoma of the pancreas (24). They showed that 5-fluorouracil, administered in conjunction with gemcitabine, did not improve the median survival of patients with advanced pancreatic carcinoma compared with single-agent gemcitabine. The authors concluded that further studies with other combinations of gemcitabine and 5-fluorouracil are not compelling and clinical trial resources should address other combinations and novel agents. Several other chemotherapy agents have been tried in combination with gemcitabine.

The combination of gemcitabine with cisplatin and oxaliplatin has been more encouraging. In a German multicenter study, Heinemann *et al.* enrolled 195 patients
to receive either gemcitabine alone or in combination with cisplatin (25). These results supported the efficacy and safety of an every-2-weeks treatment with gemcitabine plus cisplatin. Median overall survival and progression-free survival were more favorable in the combination arm as compared with gemcitabine alone, although the difference did not attain statistical significance. The French Multidisciplinary Clinical Research Group (GERCOR)/Italian Group for the Study of Gastrointestinal Tract Cancer (GISCAD) intergroup study compared gemcitabine plus oxaliplatin to gemcitabine alone (26). The pooled analysis of the GERCOR/GISCAD intergroup study and the German multicenter study indicates that the combination of gemcitabine with a platinum analog such as oxaliplatin or cisplatin significantly improves progression-free survival and overall survival as compared to single-agent gemcitabine in advanced pancreatic cancer especially in patients with good performance status (27).

Scheithauer et al. reported on gemcitabine in combination with irinotecan (28). A somewhat superior clinical benefit response rate was seen with the drug combination. However, no advantage over single-agent gemcitabine was noted in terms of objective efficacy parameters. Irinotecan with gemcitabine has not shown any benefit as compared to gemcitabine alone (29).

The combination of gemcitabine and mitomycin C was studied by Tuinmann et al. in a phase II trial involving 55 patients with advanced pancreatic cancer (30). These patients were given gemcitabine 800 mg/m² intravenously on days 1, 8 and 15, and mitomycin C 8 mg/m² intravenously on day 1 every 4 weeks in an outpatient setting. A median of 3 cycles was administered. The most frequent toxicity was thrombocytopenia grade III/IV seen in 54% of patients. The objective response rate was 29%. Eighteen patients had stable disease resulting in an overall tumor growth control of 62%. Time to progression was 4.7 months and median overall survival was 7.25 months. The authors concluded that the combination was well tolerated. Survival was similar to monotherapy with gemcitabine.

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

Cite this article as: Sugarbaker PH, Stuart OA, Bijelic L. Intraperitoneal gemcitabine chemotherapy as an adjuvant treatment for patients with resected pancreatic cancer: Phase II and pharmacologic studies. Transl Gastrointest Cancer 2012;1(2):161-168. DOI: 10.3978/j.issn.2224-4778.2012.06.04