Gastric cancer remains a worldwide public health problem especially in Asia. Over the past decade, the pattern of gastric cancer has considerably changed. Despite declining rates of distal gastric cancer, a trend of significant increasing in the incidence of proximal gastric cancer has been observed in the United States, Europe and Asia (1,2). The histology, tumor biology and clinical course are quite different between the two types of the gastric cancer. For example, diffuse histologic pattern and aggressive clinical course are frequently seen in the proximal gastric cancer. Nonetheless, the management of these two types of gastric cancer remains the same in the current practice.

The management of gastric cancer has been evolving over the past two decades. Complete surgical resection remains the cornerstone for the cure of localized early stage gastric cancer. Issues investigated and debated over the past 20 years have focused on the extent of lymphadenectomy (D1 vs. D2 dissection) with the goal of delivering an optimal cancer operation while limiting morbidity. Although D2 dissection has been the standard practice in Japan and most Asian countries, major Western studies, the “Dutch trial” (3,4) by Bonenkamp et al. and The British MRC ST01 trial (5), failed to show survival benefit of D2 dissection. These trials were criticized by poor quality control of participating surgeons. Despite these negative large randomized studies, most physicians consider that D2 dissection is advantageous due to more precise staging. This notion is supported by the stage migration phenomenon first reported by Bunt and colleagues in 1995 (6). Today, extended lymphadenectomy with pancreas and spleen preservation (known as “over-D1”) is generally practiced at major centers in the United States.

Adjuvant chemoradiation with 5-fluouracil (5-FU) and leucovorin has been the standard practice in the United States for the past twenty years. INT-0116 is a phase III randomized trial in which 603 patients with resected adenocarcinoma of the stomach or gastroesophageal junction (stages IB-IVM0) were randomized to either observation or combined modality therapy consisting of five monthly cycles of bolus chemotherapy with 45 Gy radiotherapy concurrent with cycles 2 and 3 (7). Patients in the INT-116 trial represented a high-risk group and 85% of the patients in both arms had lymph node involvement. After a median follow-up of 5 years, 3-year relapse free survival rates (48% vs. 31%; P<0.001), and hazard ratios for relapse (HR=1.52, 95% CI: 1.23-1.86) significantly favored adjuvant chemoradiation. More significantly, OS rates (50% vs. 41%; P=0.005), hazard ratio for death (HR=1.35, 95% CI: 1.09-1.66), and median OS (36 mo vs. 27 mo; P=0.0005) were also significantly improved in the chemoradiation group. Outcome data in this trial was updated in January 2004 after a median follow-up of 7 years (8). The major endpoints of the trial: OS (HR=1.31, 95% CI: 1.08-1.61), DFS (1.52, 95% CI: 1.25-1.85) were unchanged from the initial analysis.

Postoperative radiotherapy is not commonly practiced in Japan and other Asian countries. Adjuvant chemotherapy trials in the US have been disappointing. Recently, Japanese adjuvant trial is most intriguing (9). A total of 1,059 patients with stage II or III gastric cancer who underwent D2 surgical resection were randomized to either observation or one year oral S-1 adjuvant therapy. S-1 (Taiho Pharmaceutical) is an orally active combination of tegafur (a prodrug that is converted by cells to fluorouracil), gimeracil (an inhibitor of dihydropyrimidine dehydrogenase, which degrades fluorouracil), and oteracil (which inhibits the phosphorylation of fluorouracil in the gastrointestinal tract) in a molar ratio of 1:0.4:1. The 3-year overall survival
was improved in the S-1 group (80.1% in S-1 group vs.
70.1% in the observation group; \(P=0.003 \)). The toxicity
profile was very favorable. Although S-1 may impact the
clinical practice in Asian population, the results of this
agent in Western population are rather disappointing as
demonstrated in the First Line Advanced Gastric Cancer
Study (FLAGS) (10). This may be due to biological
differences between patient populations as to how the drug
is metabolized.

Preoperative chemoradiation and perioperative
chemotherapy provide benefit to down-stage the primary
tumor and eliminate micrometastasis early on. In addition,
the preoperative therapy is generally better tolerated. The
most compelling evidence for perioperative chemotherapy
is the phase III UK Medical Research Council Adjuvant
Gastric (MAGIC) trial (11). A significantly better overall
survival (HR=0.75; 95% CI: 0.60-0.93; \(P=0.009 \); 5 year
survival rate of 36% vs. 23%) and progression free survival
(HR=0.66; 95% CI: 0.53-0.81; \(P<0.001 \)) was achieved
in the perioperative group. The trial was criticized for
its non-standardized surgery, potentially inaccurate
preoperative staging due to the absence of laparoscopy,
and a relatively poor outcome in the surgery alone group.
The recent large phase III preoperative chemotherapy
studies, MRC OEO2 and intergroup 8911, had complete
different conclusions (12). However, these two studies
population enrolled predominant esophageal cancer. In
the OEO2 study, a total of 802 were randomized to either
preoperative chemotherapy with 2 cycles of cisplatin and
5-FU followed by surgical resection or surgery alone.
The study demonstrated a benefit of overall survival for
the preoperative chemotherapy group with a 16% risk
reduction (HR=0.84, 95% CI: 0.72-0.98; \(P=0.03 \)). However,
the intergroup 8911 did not support overall survival
advantages.

Several neoadjuvant studies have demonstrated that
complete pathological response (pCR) is indicative of
better prognosis. Chemotherapy alone hardly achieves
pCR. Preoperative chemoradiation generally produces
approximately 25% pCR. Most recently, Van Hagen and
co-workers published a randomized phase III study to
compare preoperative chemoradiation followed by surgery
to surgery alone (13). The study enrolled 368 patients
that were treated with surgery alone or carboplatin and
paclitaxel concurrent with radiotherapy followed by
surgery. The median overall survival was 49.4 months in
chemoradiation group and 24 months in surgery only group
(\(P=0.003 \)). A 29% pCR was achieved in the chemoradiaiton

Acknowledgements

Disclosure: The author declares no conflict of interest.

References

1. Roder DM. The epidemiology of gastric cancer. Gastric
Cancer 2002;5:5-11.
of adenocarcinoma of the esophagus and gastric cardia.
comparison of morbidity after D1 and D2 dissection
for gastric cancer in 996 Dutch patients. Lancet
after D1 and D2 resections for gastric cancer: long-term
results of the MRC randomized surgical trial. Surgical Co-
6. Bunt AM, Hermans J, Smit VT, et al. Surgical/pathologic-
stage migration confounds comparisons of gastric cancer
survival rates between Japan and Western countries. J Clin
surgery alone for adenocarcinoma of the stomach or
combined radiation and chemotherapy improves disease-

free survival (DFS) and overall survival (OS) in resected adenocarcinoma of the stomach and gastroesophageal junction: Update of the results of Intergroup Study INT-0116 (SWOG 9008). Proc Am Soc Clin Oncol 2005;106:abstract.

